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Abstract

In this paper we prove that if adghler manifold 1, ») admits a regular quantization then its scalar
curvature is constant. Moreover, we apply this result to the two-dimensional complete Reinhardt
domains inC? to show that such domains admit a regular quantization iff they are biholomorphically
isometric to the 2-ball ifC? endowed with the hyperbolic metric.
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1. Introduction

In the quantum mechanic terminology introduced by Kostant and Souriau, a geometric
quantization of a Khler manifold |1, w) is a pair ¢, h), whereL is a holomorphic line
bundle oveM, called theguantum line bundleandh is an Hermitian metric oh, such that
Ric(h) = w. Here Ricf) is the 2-form orM defined by the equation:

. i =
Ric(h) = — 00109 h(0(x). o(x). (1)
T
* Tel.: +39 070 6758527; fax: +39 070 6758511.
E-mail addressloi@unica.it.

0393-0440/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2004.07.006



A. Loi/ Journal of Geometry and Physics 53 (2005) 354—-364 355

for a trivializing holomorphic section : U ¢ M — L \ {0} of L. A Kahler manifold i/,

) admits a geometric quantization iff represents the first Chern class of the line bundle
L and this happens itb is an integral form. For any non-negative integgrconsideri.™
themth tensor power of. The Hermitian metrid induces, in a natural way, an Hermitian
metrich,, onL™, such that Rid{,,) = mw. Therefore, (", h,,) is a geometric quantization
of the Kahler manifold 1, mw). In this context one can define a smooth functigg, on

M, called theepsilonfunction (seeSection 3below) which is one of the key ingredients in
the framework of quantization oféhler manifolds carried out i{3,5-8]

A geometric quantizationL( h) of the Kahler manifold i1, ) is said to beregular if
the functiong,,,, is a non-zero (hence positive) constant for any non-negative integer

In [5,6] Cahen, Gutt and Rawnsley, obtain a deformation quantizatioMpt.) by
generalizing Berezin’s methd@8] to the case of compactatler manifolds which admit
a regular quantization. Compactkler manifold admitting a regular quantization play
also a fundamental role for the stability oakler—Einstein metri¢l6], the stability of
holomorphic line bundle and the existence of a constant scalar curvature metric in a fixed
cohomology class (s4&0,1,2).

The aim of this article is to investigate the geometric properties of regular quantizations
for non-compacKahler manifolds.

Our main results ar&heorems 4.1 and 4.Tn Theorem 4.1we prove thata Kéhler
manifold admitting a regular quantization has constant scalar curvature métsiproof is
based on the asymptotic expansion of a Laplace integral on a real anaierknanifold
due to Eng [13] (seeLemma 2.2below) and on the properties of the epsilon function
developed by Cahen, Gutt and Rawnslef6h(seeLemma 3.1below). InTheorem 4.7by
applyingTheorem 4.1we prove thah complete Reinhardt domain @ admits a regular
quantization iff it is biholomorphically isometric to the hyperbolic 2-space.

The paper is organized as follows. In Section 2, we recall the above mentioned result of
Englis about the Laplace integral. The geometric quantization tools needed for the proof of
our main results are collected$ection 3. Sectioni4 dedicated to the proof dheorems 4.1
and 4.7

2. A Laplace integral on a Kahler manifold

We refer to[12] for the material of this section and for further results. Mebe an-
dimensional complex manifold endowed with a real analythker metricg and letw be
the corresponding &hler form. Letd be a Kahler potential for the metrig, namely a real
valued functiond defined on a open sét C M satisfying

2
If g = Z’j’.,;gj,;dzjdz_k is the local expression of the metgdhen the previous equation is
equivalent to
1 9o

Sk = ;&jaz_/{'

®3)
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The potential® can be complex analytically continued to an open neighbourhéad
U x U of the diagonal. Denote this extension ®Yx, y). It is holomorphic inx and anti-
holomorphic iny and, with this notation®(x) = ®(x, x). Observe also tha®(x, y) =
®(x, y). Consider the real valued function

D(x’ y) = qD(x’;)_i_ q>(y7§) - CD(x’ﬂ - (D(y,)_C)

onW. It is easily seen that the functidd(x, y) is independent from the potential chosen
which is defined up to the sum with the real part of a holomorphic function. CEabi
christened the functiob(x, y) the diastasis functionWe refer tq9] for details and further
results on the diastasis function.

For all x € U (U as above), the positive definiteness of the matrix (3) implies that the
function

D(xv ) = CI)(x, E) + q)(v_) - @(_x,T) - CD(, -;)

has a local minimum at ShrinkingU, if necessary, we can assume thét, y) is a globally
defined onU x U, D(x, y) > 0 andD(x, y) = 0iff x = y.

Example 2.1. Consider the complex projective spa€®”, N < 4oo endowed with

the Fubini-Study fornf2g. The diastasis can be written in terms of the coordinates in
CN+1 as

2 2
Dis((2). w(w)) = log 1= 2

wherer : CN*+1\ {0} — CPV is the canonical projection and where we are denoting by
(-, -) the standard Hermitian metric @ 1. In particularD > 0 unlessr(z) = m(w) where

D = 0. Observe also that the function@s@-7w) = |z, w)|2/||z|I2|w|? is globally
defined onCPY x CPY and is equal to one on the diagonal.

Let«w be a positive real number and létC M as above. Consider the integral

La() = /U eI, )

Before stating Engd’ main result about this integrallleorem 2.2oelow), we fix our
notations and conventions.
The curvature tensor is defined as

n

_ gl/ aglq gp/ ..
R~ pg 221 _,z, k1=1...,n
ijk = 9240z Z /

The Ricci curvature is

. 32
Ric;7 = Z &R = = (Iogderg,k) ij=1,. (5)
k,/=1
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and the scalar curvature is the trace of the Ricci curvature

n —
scalg = — Z giniC,»]T. (6)
i,j=1

Heregi7 denotes the inverse matrix gf;. The Laplace operator, denoted Ayis given by

Finally, we set

n n
IRP= > |Rjgl% IRic” = ) |Ric;|.
i jik,1=1 ij=1
We are now in the position to state Eriggi result.

Lemma 2.2. (EngliS) If the integral (4) exists for some= «g then it also exists for all
a > ap and ase — +oo it has an asymptotic expansion

L~ (5) Sarato, )

r>0

where ¢ are smooth functions on U. In particular

co(x) =1
c1(x) = —%scalg (8)
ca(x) = —%Ascalg + %scalg + %|Ric|2 — 2%1|R|2,

Remark 2.3. Observe that the factor” which appears in the expansion (2.21) given by
Engli§ in[13] is missing in (7) above since Engluses the expressian= i/200® which
differs from (2) by the factor Arx.

3. Some properties of the epsilon function

We refer to[6] and[7] for the material of this section and further results. LUeth) be
a geometric quantization of adler manifold M, »). Consider the spack,, ¢ Ho(L™)
consisting of global holomorphic sectionsf L™ which are bounded with respect to

(mw)"

slln, = (5, $)h, = /M i (s2). 5()

n!

From now on we suppose that, is non-empty. One can show th#t, is a separable
complex Hilbert space. Let € M andq € L™ \ {0} a fixed point of the fibre ovex. If
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one evaluates € H,, atx, one gets a multiplgy (s) of g, i.e. s(x) = §7(s)g. The map
8y + Hm — Clis a continuous linear functional (c{6]) hence by Riesz’s theorem, there
exists a unique% € H,, such thaﬁ;”(s) = (s, e’q”)hm, Vs € Hy, i.e.

s() = (5. €V, . 9)
It follows by (9) that

_ =1 *
e{f;_c e';, Ve e C*.

The holomorphic sectionjee #,, is called thecoherent stateelative to the poing. It
follows that

emo(¥) = hn(g. 9)1€) 17 (10)

is a well-defined non-negative and smooth functiorion

Inordertorelate the functiof,,, to the Kahler geometry ofl, w) we assume throughout
all this paper thatfor m sufficiently large and for every € M there exists € H,, such
thats(x) # 0.

The previous assumption has three important consequences.

First, it implies that £ # O, for m sufficiently large and, therefore, the functiep,, is
strictly positive onM.

Secondly, fom sufficiently large, we can define a holomorphic map

@m M — CPV, (12)

called thecoherent states mags follows. LetV + 1 (N < +o0) be the complex dimension
of the Hilbert spacé{,, and let §o, .. ., sy) be a orthonormal basis fé¢,,. If the previous
assumption holds then, for a trivialising holomorphic secionU — L on a open set
U C M, one can define a holomorphic map

so(x) SN(X)>
ox)" o) )

If ¢: V — L is another holomorphic trivialisation then there exists a hon-vanishing holo-
morphic functionf on U N V, such thab(x) = f(x)z(x). The coherent states map (11) is
the map whose local expression in the operi kit given by (12).

The relation between this map and the functigp can be read in the following formula
due to Rawnsley (sgé5]):

(pC,ZU—>(CN\{0}ZxI—>( (12)

0" (Qrs) = mo + 2’?3&09 mo- (13)

Thereforeg,,,, measures the obstruction for théter formmw to be projectively induced
via the coherent states map .

In the non-compact case the previous assumption is equivalent to the absence of based
points in the Kodaira’s theory and the map (11) is the Kodaira map written in the orthonormal
basisso, ..., sy. Therefore, inthe compact case our assumption is satisfieudofficiently
large.
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The third implication of our assumption above is that one can define the 2-point
function

(el € ) 2

Um(x,y) = (14)

lem )z ||€m I,

whereq andq are non-zero elements in the fibresxafndy, respectively (sef] and[7]
for the use of this 2-point function in the quantization context).
The proof of the following lemma can be found[B].

Lemma3.1. Let (L, h) be ageometric quantization of a real analytidimensional Kahler
manifold (M w). For m sufficiently large, consider the functiep,, on M and the 2-point
function,, (x, y) on M x M given by formulae (10) and (14). Then the following holds
true:

e_mD(x’y)léma)(X, §)|2 = Ema)()c)emw(y)wm (x’ y)’ (15)

/ I (y)

wheree,,,(x, y) denotes the analytic extension in a neighbourhood of the diagonal of the
functione,;;, (x).

=1, (16)

Remark 3.2. Observe that since the right hand side of (15) is globally defined on M
then the function @*P®-Y|¢,,.(x, y)|2 is a well-defined function ot/ x M even if the
single functions &"2(-Y) and|e,., (x, y)|2 are a priori defined only in a neighbourhood of
the diagonal.

4. Proof of the main results

In this section we proofheorem 4.1land its consequence in the one-dimensional case
(seeCorollary 4.4below). We also classify the regular quantization of a two-dimensional
complete Reinhardt domain (s&éheorem 4.Y.

Theorem 4.1. Let (M, w) be a Kdhler manifold and let g be its associatedi{é&r metric.

If (M, w) admits a regular quantization theswal,, the scalar curvature of g, is constant.

If moreoverRic,, the Ricci tensor of g, vanishes then the norm of the curvature tensor is
constant.

Proof. Since the quantization is regular it follows by (13) (with= 1) thatw is projectively
induced via the map;, namelyp3 (2 rs) = . By a result of Calabj9] the Kahler formo

is then real-analytic and its diastasis functidms obtained by the restriction, via the map
¢, of the diastasis functioB rs onC P", namelyp*(Drs) = D. It follows by Example 2.1
that the diastasis functidD(x, y) vanishes if and only ik = y and moreover the function
e~ L) is globally defined o x M. This function admits the points of the diagonal as
critical points. In fact at these points it has its maximum value, namely 1 2@-® = 1if
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and only ifx = y. From this, it follows that the expansion (7), valid in the openéet M,
can be extended to all &1, namely (witho = m) one has:

mn/ e—mD(x,y) a)n(y) —1— C]_()C) +
M n! m m

c2(x) .

2 (17)

Using again the fact that the quantization is regular, it follows that the 2-point function
Y (x, ¥) can be defined oM x M and by formulae (15) and (16) we can write

n
m" / e—mD(x,y) 70) (Iy) = €nw- (18)
M n:

O

Finally, formulae (17) and (18) together with (8) implies thadl, is constant and if,
moreover, the metrig is Ricci flat then alsdR|? is constant.

Remark 4.2. Observe that irf7] one can find the proof that in the regular case there
exists an asymptotic expansion fgy,, as in formula (18) above. Nevertheless, here we are
computing its coefficients explicitly.

Remark 4.3. In the compact case the proof of olineorem 4.Xan be easily deduced by
Tian—Yau—Zelditch asymptotic expansion (§£f. Observe also that the hypothesis on the
vanishing of the Ricci tensor in odiheorem 4.Jautomatically implies that the manifold

is not compact. Indeed, by a result of HUlir1], it cannot exist a Ricci flat and projectively
induced Kahler formw on a compact complex manifoMd.

As a corollary ofTheorem 4.Jone gets the following:

Corollary 4.4. Let (M, w) be a one-dimensional and simply-connectethléi’ manifold
which admits a regular quantization. Then (M) is biholomorphically equivalent to a
complex space form, namely either the flat spétev = 3dz A d7), the one-dimensional
unitary disk inC endowed with the hyperbolic metric, or the projective sga#é endowed
with the Fubini—Study metric.

We now study the case of two-dimensional complete Reinhardt domains. Observe that
Berezin's quantization of these domains has been extensively studit8] ito whom we
refer for further results.

Recall that a domain/ ¢ C? is calledReinhardtif z = (z1, z2) € M wheneverw =
(w1, w2) € M and|z1| = |w1l, |z2] = |wa|. If the same holds even for @lwith |z1 < |w1]
and|z2 < |wz|, the Reinhardt domain is calle@mplete One can show that any complete
Reinhardt domain is of the form

M = Dr = {(z1, 22) € C?||z1/? < x0, |221* < F(1z1/%)}, (19)

whereF : [0, xg) — (0, +00] is a non-increasing lower semi-continous function from the
interval [0, xo) C R to the extended positive reals, (Boo] (the casexrp = +oo is not ex-
cluded).

In the hypothesis that (0) < oo, one can define a real 2-form @y by

wF = ~39log

27019 L) — (20)
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Example 4.5. In the caseF'(x) = 1 — x, (Dr, wr) is the open 2-balD; in C? endowed
with the hyperbolic Khler formwr = wpy, = —533l0g(1 — z1]% — |z2/?). In this case
D, admits a regular quantization (see ¢4).

The following Proposition gives us the conditions under whighis a Kahler form on
Dr.

Proposition 4.6. Assume that F is continous ¢@, xo) andC? on (0 xo). The following
conditions are equivalent

() wr isaKéhler form onDp.
(i)) the functionA(x) = —xF (x)/F(x), satisfiesA'(x) > 0, Vx € [0, xo), whereF’ de-
notes the first derivative of F with respect to x
(i) Dr is strongly pseudoconvex

Proof. For the proof se¢12]. We just give here the proof of the equivalenée< (ii)
since we wiil need it later.

Let wp = i/2"5,_, 8 xdz; A dz be the expression of thedler formwy in the
(global) coordinates(, z2). A simple calculation shows that

—HF' — HxF" + xF'?

811 = 2 s
H x=lzaf?
—F'_
812=821= ?ZlZZ ) (21)
x=|z1/?

3 F
822 = H?

9
x=|z1/?

whereH is the real valued function o defined byH(z1, z2) = F(]z1]%) — |z2/%. An
easy calculation shows that:

AW (22)

S 5 F? (xF"\’
detg ;i = 811822 — 18121° = <)
x=lz1/2
The forme satisfies the Bhler condition if and only if the matriy ; is positive definite
and, sincey; > 0, this is the case if and only if dgti > 0 which, by (22), turns out to be
equivalent toif). O

In what follows we will supposer is a Kahler form. Since we only work in the smooth
case we will also assume thais a smooth function on [Ocp).

Observe that the &hler formw is exact and hence integral. Therefofes(, wr) admits
a geometric quantization.

We are now in the position to prove the main result of this section.

Theorem 4.7. Let Dr be a complete Reinhardt domain and suppose dhais a Kahler
formonDg. Then(Dr, wr) admits aregular quantizationifD r, wr) is biholomorphically
isometric to(D2, whyp).
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Proof. The “if” part follows by Example 4.5 The opposite implication is a consequence
of our Theorem 4.1and of the followingTheorem 4.8interesting on its own sake. [

Theorem 4.8. Let Dr be a complete Reinhardt domain and supposedhais a Kahler
form onDr. Suppose thaical, ., the scalar curvature of the metrig-, equals a constant.
Then(Dr, wr) is biholomorphically isometric t6D2, whyp).

Proof. A straightforward calculation using (21), (22) and (5) gives the following expression
for the component of the Ricci tensor for the megie

Ric;; = —3g17 — A(lz1l?),
Rici = Ricyy = —3g12, (23)
Ricy; = —3g22,

whereA(|z1|?) is the function defined o, = {z1 € C||z1/? < xo} by:

d ad
A(z1)?) = — [x log(xF"? — FF' — xF ”)] (24)

8x 8)C X=|Zl\2

The scalar curvature is given by:

2 _ _ _

scalgy = Z g"Ric;; = —6— g™ A(lz1/*) = -6 — %A(|Zl|z)
i,j=1 et jk
H
= —6+ A(lz2). (25)

F(XF//F)/|X=\Z1|2

Suppose thatcal,, equals a constant. Sindé¢ = F(|z1]%) — |z|? depends onzz|? and

A(1211%)/F(xF /F) | ., depends only oife1|? this forcesA to be identically zero. By
expression (24) we get:

a[ o
— |x—log(xF’?> — FF' — xFF")
ox | ox

x=lz1f?
= A(log(xF”? — FF' — xFF")|,_.,2) = 0

whereA = 8/8x§ + a/ayf is the standard Laplacian with respeckiQys, the real part and
imaginary part ofzi, respectively. This means that the function log@ — FF'—
xFF”)[xzmlz, defined on the disB,,, is harmonic. Thus

xF'? — FF' — xFF"
x=|z
for some holomorphic functio® on D,,,.
Observe also that the fact tha(|z1|?) = 0 implies, by (23), that Rig = —3g 1, i.e.
the metricg ¢ is Kahler—Einstein with Einstein constant-3. By well-known results, Einstein
metrics are real analytic (see €4j). Hence the metrig r and the functiori, definingDp,
are real analytic in-xo, xo). The same is true for the functi@i(x) = xF'’2 — FF' — xFF",
namely the left hand side of equality (26). We claim tG#t) is equal to a constant. Indeed,
let G(x) = zf;g bix' be the converging Taylor expansion@fx) in a neighbourhood of

o =1’ (26)
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x =0 and letd(z1) = zj;’g ajz{ be the power expansion series dfaround Oc D,,.
Then equality (26) translates as

+00 +o0
— Jok 2
E ajaxzizy = E bilzal”.
Jj. k=0 =0

Then all terms of the formoa ; with j # 0 are equal to zero. On the other hagd= ®(0) =
—F(0)F (0) # 0. This implies that;; = O, Vj > 1 and hence, again by equality (26),

G(x) = xF”?> — FF' — xFF" = ®(0) = ao, (27)

which proves our claim. Taking the first derivative of (27) at zero one gée)2"’(0) = 0.
Since F(0) # 0, it follows that F”/(0) = 0. Taking the higher order derivatives of (27) at
zero one obtains

& , 17 12 k
_ o(F +XFk)F 0=k + )FO L), k=2
I ok

0

and sod* F/9x¥(0) = 0, k > 2. Using again the analyticity &f one obtains thaf (x) =
a — Bx, wherex and g are positive constants. Then the map

¢ :Dp — D?: (z1, z2) (\/EZL \/TZ2>
o o

is a biholomorphism satisfying
@* (whyp) = wF

and this concludes the proof of our theorem. O

Remark 4.9. Observe thaTheorem 4.8s a generalization of a Theorem 3.1[i#] where
we prove that i is Einstein thenDr, wr) is biholomorphically isometric tolfz, wyyy).
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