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Abstract

In this paper we prove that if a K̈ahler manifold (M,ω) admits a regular quantization then its scalar
curvature is constant. Moreover, we apply this result to the two-dimensional complete Reinhardt
domains inC2 to show that such domains admit a regular quantization iff they are biholomorphically
isometric to the 2-ball inC2 endowed with the hyperbolic metric.
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1. Introduction

In the quantum mechanic terminology introduced by Kostant and Souriau, a geometric
quantization of a K̈ahler manifold (M, ω) is a pair (L, h), whereL is a holomorphic line
bundle overM, called thequantum line bundle, andh is an Hermitian metric onL, such that
Ric(h) = ω. Here Ric(h) is the 2-form onM defined by the equation:

Ric(h) = − i

2π
∂∂̄ logh(σ(x), σ(x)), (1)
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for a trivializing holomorphic sectionσ : U ⊂ M → L \ {0} of L. A Kähler manifold (M,
ω) admits a geometric quantization iffω represents the first Chern class of the line bundle
L and this happens iffω is an integral form. For any non-negative integerm, considerLm

themth tensor power ofL. The Hermitian metrich induces, in a natural way, an Hermitian
metrichm onLm, such that Ric(hm) = mω. Therefore, (Lm, hm) is a geometric quantization
of the Kähler manifold (M, mω). In this context one can define a smooth functionεmω, on
M, called theepsilonfunction (seeSection 3below) which is one of the key ingredients in
the framework of quantization of K̈ahler manifolds carried out in[3,5–8].

A geometric quantization (L, h) of the Kähler manifold (M, ω) is said to beregular if
the functionεmω is a non-zero (hence positive) constant for any non-negative integerm.

In [5,6] Cahen, Gutt and Rawnsley, obtain a deformation quantization of (M, ω) by
generalizing Berezin’s method[3] to the case of compact K̈ahler manifolds which admit
a regular quantization. Compact Kähler manifold admitting a regular quantization play
also a fundamental role for the stability of Kähler–Einstein metric[16], the stability of
holomorphic line bundle and the existence of a constant scalar curvature metric in a fixed
cohomology class (see[10,1,2]).

The aim of this article is to investigate the geometric properties of regular quantizations
for non-compactKähler manifolds.

Our main results areTheorems 4.1 and 4.7. In Theorem 4.1we prove thata Kähler
manifold admitting a regular quantization has constant scalar curvature metric. Its proof is
based on the asymptotic expansion of a Laplace integral on a real analytic Kähler manifold
due to Englǐs [13] (seeLemma 2.2below) and on the properties of the epsilon function
developed by Cahen, Gutt and Rawnsley in[6] (seeLemma 3.1below). InTheorem 4.7, by
applyingTheorem 4.1, we prove thata complete Reinhardt domain inC2 admits a regular
quantization iff it is biholomorphically isometric to the hyperbolic 2-space.

The paper is organized as follows. In Section 2, we recall the above mentioned result of
Engliš about the Laplace integral. The geometric quantization tools needed for the proof of
our main results are collected inSection 3. Section 4is dedicated to the proof ofTheorems 4.1
and 4.7.

2. A Laplace integral on a Kähler manifold

We refer to[12] for the material of this section and for further results. LetM be an-
dimensional complex manifold endowed with a real analytic Kähler metricg and letω be
the corresponding K̈ahler form. Let� be a K̈ahler potential for the metricg, namely a real
valued function� defined on a open setU ⊂ M satisfying

ω = i

2π
∂∂̄�. (2)

If g =∑n
jk̄
gjk̄dzjdz̄k is the local expression of the metricg then the previous equation is

equivalent to

gjk̄ = 1

π

∂2�

∂zj∂z̄k
. (3)
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The potential� can be complex analytically continued to an open neighbourhoodW ⊂
U × U of the diagonal. Denote this extension by�(x, ȳ). It is holomorphic inx and anti-
holomorphic iny and, with this notation,�(x) = �(x, x̄). Observe also that�(x, ȳ) =
�(x̄, y). Consider the real valued function

D(x, y) = �(x, x̄) +�(y, ȳ) −�(x, ȳ) −�(y, x̄)

onW. It is easily seen that the functionD(x, y) is independent from the potential chosen
which is defined up to the sum with the real part of a holomorphic function. Calabi[9]
christened the functionD(x, y) thediastasis function. We refer to[9] for details and further
results on the diastasis function.

For all x ∈ U (U as above), the positive definiteness of the matrix (3) implies that the
function

D(x, ·) = �(x, x̄) +�(·, ·̄) −�(x, ·̄) −�(·, x̄)

has a local minimum atx. ShrinkingU, if necessary, we can assume thatD(x, y) is a globally
defined onU × U, D(x, y) ≥ 0 andD(x, y) = 0 iff x = y.

Example 2.1. Consider the complex projective spaceCPN, N ≤ +∞ endowed with
the Fubini–Study form�FS . The diastasis can be written in terms of the coordinates in
C
N+1 as

DFS(π(z), π(w)) = log
‖z‖2‖w‖2

|〈z,w〉|2 ,

whereπ : C
N+1 \ {0} → CPN is the canonical projection and where we are denoting by

〈·, ·〉 the standard Hermitian metric onC
N+1. In particularD > 0 unlessπ(z) = π(w) where

D = 0. Observe also that the function e−DFS (π(z),π(w)) = |〈z,w〉|2/‖z‖2‖w‖2 is globally
defined onCPN × CPN and is equal to one on the diagonal.

Let α be a positive real number and letU ⊂ M as above. Consider the integral

Lα(x) =
∫
U

e−αD(x,y)ω
n

n!
(y), (4)

Before stating Engliš’ main result about this integral (Theorem 2.2below), we fix our
notations and conventions.

The curvature tensor is defined as

Rij̄kl̄ = ∂2gij̄

∂zk∂z̄l
−

n∑
p,q=1

gpq̄
∂giq̄

∂zk

∂gpj̄

∂z̄l
, i, j, k, l = 1, . . . , n

The Ricci curvature is

Ricij̄ = −
n∑

k,l=1

gkl̄Rij̄kl̄ = − ∂2

∂zi∂z̄j
(logdetgjk̄), i, j = 1, . . . , n (5)
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and the scalar curvature is the trace of the Ricci curvature

scalg = −
n∑

i,j=1

gij̄Ricij̄ . (6)

Heregij̄ denotes the inverse matrix ofgij̄. The Laplace operator, denoted by+, is given by

+f =
n∑

i,j=1

gij̄
∂2f

∂zi∂z̄j
.

Finally, we set

|R|2 =
n∑

i,j,k,l=1

|Rij̄kl̄|2, |Ric|2 =
n∑

i,j=1

|Ricij̄|2.

We are now in the position to state Engliš’s result.

Lemma 2.2. (Engliš) If the integral (4) exists for someα = α0 then it also exists for all
α > α0 and asα → +∞ it has an asymptotic expansion

Lα(x) ∼
(

1

α

)n∑
r≥0

α−rcr(x), (7)

where cr are smooth functions on U. In particular

c0(x) = 1

c1(x) = −1
2scalg

c2(x) = −1
3+scalg + 1

8scal
2
g + 1

6|Ric|2 − 1
24|R|2,

(8)

Remark 2.3. Observe that the factorπn which appears in the expansion (2.21) given by
Engliš in [13] is missing in (7) above since Engliš uses the expressionω = i/2∂∂̄� which
differs from (2) by the factor 1/π.

3. Some properties of the epsilon function

We refer to[6] and[7] for the material of this section and further results. Let (L, h) be
a geometric quantization of a Kähler manifold (M, ω). Consider the spaceHm ⊂ H0(Lm)
consisting of global holomorphic sectionss of Lm which are bounded with respect to

||s||hm = 〈s, s〉hm =
∫
M

hm(s(x), s(x))
(mω)n

n!
.

From now on we suppose thatHm is non-empty. One can show thatHm is a separable
complex Hilbert space. Letx ∈ M andq ∈ Lm \ {0} a fixed point of the fibre overx. If
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one evaluatess ∈ Hm at x, one gets a multipleδmq (s) of q, i.e. s(x) = δmq (s)q. The map
δmq : Hm → C is a continuous linear functional (cfr.[5]) hence by Riesz’s theorem, there
exists a unique emq ∈ Hm such thatδmq (s) = 〈s,emq 〉hm,∀s ∈ Hm, i.e.

s(x) = 〈s, emq 〉hmq. (9)

It follows by (9) that

emcq = c̄−1emq , ∀c ∈ C
∗.

The holomorphic section emq ∈ Hm is called thecoherent staterelative to the pointq. It
follows that

εmω(x) = hm(q, q)|emq |2
hm
, (10)

is a well-defined non-negative and smooth function onM.
In order to relate the functionεmω to the K̈ahler geometry of (M,ω) we assume throughout

all this paper that:for m sufficiently large and for everyx ∈ M there existss ∈ Hm such
that s(x) �= 0.

The previous assumption has three important consequences.
First, it implies that emq �= 0, form sufficiently large and, therefore, the functionεmω is

strictly positive onM.
Secondly, formsufficiently large, we can define a holomorphic map

ϕm : M → CPN, (11)

called thecoherent states mapas follows. LetN + 1 (N ≤ +∞) be the complex dimension
of the Hilbert spaceHm and let (s0, . . . , sN ) be a orthonormal basis forHm. If the previous
assumption holds then, for a trivialising holomorphic sectionσ : U → L on a open set
U ⊂ M, one can define a holomorphic map

ϕσ : U → C
N \ {0} : x �→

(
s0(x)

σ(x)
, . . . ,

sN (x)

σ(x)

)
. (12)

If τ : V → L is another holomorphic trivialisation then there exists a non-vanishing holo-
morphic functionf onU ∩ V , such thatσ(x) = f (x)τ(x). The coherent states map (11) is
the map whose local expression in the open setU is given by (12).

The relation between this map and the functionεmω can be read in the following formula
due to Rawnsley (see[15]):

ϕ∗
m(�FS) = mω + i

2π
∂∂̄ logεmω. (13)

Therefore,εmω measures the obstruction for the Kähler formmω to be projectively induced
via the coherent states mapϕm.

In the non-compact case the previous assumption is equivalent to the absence of based
points in the Kodaira’s theory and the map (11) is the Kodaira map written in the orthonormal
basiss0, . . . , sN . Therefore, in the compact case our assumption is satisfied formsufficiently
large.
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The third implication of our assumption above is that one can define the 2-point
function

ψm(x, y) =
|〈emq , emq′ 〉hm |2

‖emq ‖2
hm

‖em
q
′ ‖2
hm

, (14)

whereq andq
′
are non-zero elements in the fibres ofx andy, respectively (see[6] and[7]

for the use of this 2-point function in the quantization context).
The proof of the following lemma can be found in[6].

Lemma3.1. Let (L, h) be a geometric quantization of a real analyticn-dimensional K¨ahler
manifold (M, ω). For m sufficiently large, consider the functionεmω on M and the 2-point
functionψm(x, y) onM ×M given by formulae (10) and (14). Then the following holds
true:

e−mD(x,y)|εmω(x, ȳ)|2 = εmω(x)εmω(y)ψm(x, y), (15)

mn

∫
M

ψm(x, y)εmω(y)
ωn(y)

n!
= 1, (16)

whereεmω(x, ȳ) denotes the analytic extension in a neighbourhood of the diagonal of the
functionεmω(x).

Remark 3.2. Observe that since the right hand side of (15) is globally defined onM ×M

then the function e−mD(x,y)|εmω(x, ȳ)|2 is a well-defined function onM ×M even if the
single functions e−mD(x,y) and|εmω(x, ȳ)|2 are a priori defined only in a neighbourhood of
the diagonal.

4. Proof of the main results

In this section we proofTheorem 4.1, and its consequence in the one-dimensional case
(seeCorollary 4.4below). We also classify the regular quantization of a two-dimensional
complete Reinhardt domain (seeTheorem 4.7).

Theorem 4.1. Let (M, ω) be a Kähler manifold and let g be its associated K¨ahler metric.
If (M, ω) admits a regular quantization thenscalg, the scalar curvature of g, is constant.
If moreoverRicg, the Ricci tensor of g, vanishes then the norm of the curvature tensor is
constant.

Proof. Since the quantization is regular it follows by (13) (withm = 1) thatω is projectively
induced via the mapϕ1, namelyϕ∗

1(�FS) = ω. By a result of Calabi[9] the Kähler formω

is then real-analytic and its diastasis functionD is obtained by the restriction, via the map
ϕ, of the diastasis functionDFS onCPN , namelyϕ∗(DFS) = D. It follows by Example 2.1
that the diastasis functionD(x, y) vanishes if and only ifx = y and moreover the function
e−D(x,y) is globally defined onM ×M. This function admits the points of the diagonal as
critical points. In fact at these points it has its maximum value, namely 1 and e−D(x,y) = 1 if
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and only ifx = y. From this, it follows that the expansion (7), valid in the open setU ⊂ M,
can be extended to all ofM, namely (withα = m) one has:

mn

∫
M

e−mD(x,y)ω
n(y)

n!
= 1 − c1(x)

m
+ c2(x)

m2 + · · · (17)

Using again the fact that the quantization is regular, it follows that the 2-point function
ψm(x, y) can be defined onM ×M and by formulae (15) and (16) we can write

mn

∫
M

e−mD(x,y)ω
n(y)

n!
= εmω. (18)

�
Finally, formulae (17) and (18) together with (8) implies thatscalg is constant and if,

moreover, the metricg is Ricci flat then also|R|2 is constant.

Remark 4.2. Observe that in[7] one can find the proof that in the regular case there
exists an asymptotic expansion forεmω as in formula (18) above. Nevertheless, here we are
computing its coefficients explicitly.

Remark 4.3. In the compact case the proof of ourTheorem 4.1can be easily deduced by
Tian–Yau–Zelditch asymptotic expansion (see[1]). Observe also that the hypothesis on the
vanishing of the Ricci tensor in ourTheorem 4.1automatically implies that the manifoldM
is not compact. Indeed, by a result of Hulin[11], it cannot exist a Ricci flat and projectively
induced K̈ahler formω on a compact complex manifoldM.

As a corollary ofTheorem 4.1one gets the following:

Corollary 4.4. Let (M, ω) be a one-dimensional and simply-connected K¨ahler manifold
which admits a regular quantization. Then (M, ω) is biholomorphically equivalent to a
complex space form, namely either the flat space(C, ω = 1

2dz ∧ dz̄), the one-dimensional
unitary disk inC endowedwith the hyperbolic metric, or the projective spaceCP1 endowed
with the Fubini–Study metric.

We now study the case of two-dimensional complete Reinhardt domains. Observe that
Berezin’s quantization of these domains has been extensively studied in[13] to whom we
refer for further results.

Recall that a domainM ⊂ C
2 is calledReinhardtif z = (z1, z2) ∈ M wheneverw =

(w1, w2) ∈ M and|z1| = |w1|, |z2| = |w2|. If the same holds even for allzwith |z1 ≤ |w1|
and|z2 ≤ |w2|, the Reinhardt domain is calledcomplete. One can show that any complete
Reinhardt domain is of the form

M = DF = {(z1, z2) ∈ C
2||z1|2 < x0, |z2|2 < F (|z1|2)}, (19)

whereF : [0, x0) → (0,+∞] is a non-increasing lower semi-continous function from the
interval [0, x0) ⊂ R to the extended positive reals (0,+∞] (the casex0 = +∞ is not ex-
cluded).

In the hypothesis thatF (0) < ∞, one can define a real 2-form onDF by

ωF = i

2
∂∂̄ log

1

F (|z1|2) − |z2|2 . (20)
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Example 4.5. In the caseF (x) = 1 − x, (DF , ωF ) is the open 2-ballD2 in C
2 endowed

with the hyperbolic K̈ahler formωF = ωhyp = − i
2∂∂̄ log(1− |z1|2 − |z2|2). In this case

D2 admits a regular quantization (see e.g.[7]).

The following Proposition gives us the conditions under whichωF is a Kähler form on
DF .

Proposition 4.6. Assume that F is continous on[0, x0) andC2 on (0, x0). The following
conditions are equivalent:

(i) ωF is a Kähler form onDF .
(ii) the functionA(x) = −xF ′

(x)/F (x), satisfiesA
′
(x) > 0, ∀x ∈ [0, x0), whereF ′ de-

notes the first derivative of F with respect to x.
(iii) DF is strongly pseudoconvex.

Proof. For the proof see[12]. We just give here the proof of the equivalence (i) ⇔ (ii)
since we wiil need it later.

Let ωF = i/2
∑2

j,k=1 gjk̄dzj ∧ dz̄k be the expression of the Kähler formωF in the
(global) coordinates (z1, z2). A simple calculation shows that

g11̄ = −HF ′ −HxF ′′ + xF ′2

H2

∣∣∣∣
x=|z1|2

,

g12̄ = g21̄ = −F ′

H2 z̄1z2

∣∣∣∣
x=|z1|2

,

g22̄ = F

H2

∣∣∣∣
x=|z1|2

,

(21)

whereH is the real valued function onDF defined byH(z1, z2) = F (|z1|2) − |z2|2. An
easy calculation shows that:

detgjk̄ = g11̄g22̄ − |g12̄|2 = −F2

H3

(
xF ′

F

)′∣∣∣∣∣
x=|z1|2

. (22)

The formωF satisfies the K̈ahler condition if and only if the matrixgjk̄ is positive definite
and, sinceg22̄ > 0, this is the case if and only if detgjk̄ > 0 which, by (22), turns out to be
equivalent to (ii ). �

In what follows we will supposeωF is a Kähler form. Since we only work in the smooth
case we will also assume thatF is a smooth function on [0, x0).

Observe that the K̈ahler formωF is exact and hence integral. Therefore (DF,ωF ) admits
a geometric quantization.

We are now in the position to prove the main result of this section.

Theorem 4.7. LetDF be a complete Reinhardt domain and suppose thatωF is a Kähler
formonDF .Then(DF,ωF )admits a regular quantization iff(DF,ωF ) is biholomorphically
isometric to(D2, ωhyp).
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Proof. The “if” part follows by Example 4.5. The opposite implication is a consequence
of ourTheorem 4.1and of the followingTheorem 4.8, interesting on its own sake. �
Theorem 4.8. LetDF be a complete Reinhardt domain and suppose thatωF is a Kähler
form onDF . Suppose thatscalgF , the scalar curvature of the metricgF , equals a constant.
Then(DF,ωF ) is biholomorphically isometric to(D2, ωhyp).

Proof. A straightforward calculation using (21), (22) and (5) gives the following expression
for the component of the Ricci tensor for the metricgF :

Ric11̄ = −3g11̄ − A(|z1|2),

Ric12̄ = Ric21̄ = −3g12̄,

Ric22̄ = −3g22̄,

(23)

whereA(|z1|2) is the function defined onDx0 = {z1 ∈ C||z1|2 < x0} by:

A(|z1|2) = ∂

∂x

[
x
∂

∂x
log(xF ′2 − FF ′ − xFF ′′)

]∣∣∣∣
x=|z1|2

(24)

The scalar curvature is given by:

scalgF =
2∑

i,j=1

gij̄Ricij̄ = −6 − g11̄A(|z1|2) = −6 − g22̄

detgjk̄
A(|z1|2)

= −6 + H

F (xF ′
/F )′ | x=|z1|2

A(|z1|2). (25)

Suppose thatscalgF equals a constant. SinceH = F (|z1|2) − |z|2 depends on|z2|2 and
A(|z1|2)/F (xF

′
/F )

′ |x=|z1|2 depends only on|z1|2 this forcesA to be identically zero. By
expression (24) we get:

∂

∂x

[
x
∂

∂x
log(xF ′2 − FF ′ − xFF ′′)

]∣∣∣∣
x=|z1|2

= +(log(xF ′2 − FF ′ − xFF ′′)|x=|z1|2) = 0

where+ = ∂/∂x2
1 + ∂/∂y2

1 is the standard Laplacian with respect tox1, y1, the real part and
imaginary part of z1, respectively. This means that the function log(xF ′2 − FF ′−
xFF ′′)

∣∣
x=|z1|2, defined on the diskDx0, is harmonic. Thus

xF ′2 − FF ′ − xFF ′′
∣∣∣
x=|z1|2

= |�(z1)|2, (26)

for some holomorphic function� onDx0.
Observe also that the fact thatA(|z1|2) = 0 implies, by (23), that Ricjk̄ = −3gjk̄, i.e.

the metricgF is Kähler–Einstein with Einstein constant-3. By well-known results, Einstein
metrics are real analytic (see e.g.[4]). Hence the metricgF and the functionF, definingDF ,
are real analytic in (−x0, x0). The same is true for the functionG(x) = xF ′2 − FF ′ − xFF ′′,
namely the left hand side of equality (26). We claim thatG(x) is equal to a constant. Indeed,
let G(x) =∑+∞

l=0 blx
l be the converging Taylor expansion ofG(x) in a neighbourhood of
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x = 0 and let�(z1) =∑+∞
j=0 ajz

j
1 be the power expansion series of� around 0∈ Dx0.

Then equality (26) translates as

+∞∑
j,k=0

ajākz
j
1z̄

k
1 =

+∞∑
l=0

bl|z1|2l.

Then all terms of the forma0āj with j �= 0 are equal to zero. On the other handa0 = �(0) =
−F (0)F

′
(0) �= 0. This implies thataj = 0,∀j > 1 and hence, again by equality (26),

G(x) = xF ′2 − FF ′ − xFF ′′ = �(0) = a0, (27)

which proves our claim. Taking the first derivative of (27) at zero one gets 2F (0)F ′′(0) = 0.
SinceF (0) �= 0, it follows thatF ′′(0) = 0. Taking the higher order derivatives of (27) at
zero one obtains

0 = ∂k((F ′ + xF ′′)F − xF ′2)

∂xk
(0) = (k + 1)F (0)

∂kF

∂xk
(0), k ≥ 2,

and so∂kF/∂xk(0) = 0, k ≥ 2. Using again the analyticity ofF one obtains thatF (x) =
α− βx, whereα andβ are positive constants. Then the map

ϕ : DF → D2 : (z1, z2) �→
(√

β

α
z1,

√
1

α
z2

)

is a biholomorphism satisfying

ϕ∗(ωhyp) = ωF

and this concludes the proof of our theorem. �

Remark 4.9. Observe thatTheorem 4.8is a generalization of a Theorem 3.1 in[14] where
we prove that ifgF is Einstein then (DF,ωF ) is biholomorphically isometric to (D2, ωhyp).
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